21 points!!Determine the number of real solutions each quadratic equation has. Answer with either no, one, or two.
1.) y = 12x^2 - 9x + 4 has _ real solution(s)
2.) 10x + y = -x^2 + 2 has _ real solution(s)
3.) 4y - 7 = 5x^2 - x + 2 + 3y has _ real solution(s)
4.) y = (-x + 4)^2 has _ real solution(s)

Respuesta :

rgwoot
Determine the number of real solutions each quadratic equation has. Answer with either no, one, or two.
1.) y = 12x^2 - 9x + 4 has _ real solution(s)
2.) 10x + y = -x^2 + 2 has _ real solution(s)
3.) 4y - 7 = 5x^2 - x + 2 + 3y has _ real solution(s)
4.) y = (-x + 4)^2 has _ real solution(s)
Ver imagen rgwoot

[tex]y = 12\cdot x^{2}-9\cdot x + 4[/tex] has no real solutions.

[tex]10\cdot x + y = -x^{2}+2[/tex]  has two distinct real solutions.

[tex]4\cdot y - 7 = 5\cdot x^{2}-x + 2 + 3\cdot y[/tex] has no real solutions.

[tex]y = (-x +4)^{2}[/tex] has two equal real solutions.

In this exercise we need to determine the nature of solutions of given quadratic equations. According to the Fundamental Theorem of Algebra, a quadratic equation has two solutions, whose discriminant is:

[tex]\delta = B^{2} - 4\cdot A\cdot C[/tex] (1)

Where:

  • [tex]A[/tex] - Second order coefficient.
  • [tex]B[/tex] - First order coefficient.
  • [tex]C[/tex] - Zero order coefficient.

The value of the discriminant tells us the nature of solutions of a given quadratic equation:

1) If [tex]\delta > 0[/tex], then the equation has two distinct real solutions.

2) If [tex]\delta = 0[/tex], then the equation has two equal real solutions.

3) If [tex]\delta < 0[/tex], then the equation has two conjugated complex solutions.

Now we proceed to check each expression:

1) [tex]y = 12\cdot x^{2}-9\cdot x + 4[/tex] ([tex]A = 12, B = -9, C = 4[/tex])

[tex]\delta = B^{2} - 4\cdot A\cdot C[/tex]

[tex]\delta = (-9)^{2}-4\cdot (12)\cdot (4)[/tex]

[tex]\delta = -15[/tex]

[tex]y = 12\cdot x^{2}-9\cdot x + 4[/tex] has no real solutions.

2) [tex]10\cdot x + y = -x^{2}+2[/tex]

First, we reorganize the expression:

[tex]y = -x^{2} -10\cdot x + 2[/tex] ([tex]A = -1, B = -10, C = 2[/tex])

[tex]\delta = B^{2} - 4\cdot A\cdot C[/tex]

[tex]\delta = (-10)^{2}-4\cdot (-1)\cdot (2)[/tex]

[tex]\delta = 108[/tex]

[tex]10\cdot x + y = -x^{2}+2[/tex]  has two distinct real solutions.

3) [tex]4\cdot y - 7 = 5\cdot x^{2}-x + 2 + 3\cdot y[/tex]

First, we simplify the expression:

[tex]4\cdot y - 3\cdot y = 5\cdot x^{2}-x +2 +7[/tex]

[tex]y = 5\cdot x^{2}-x +9[/tex] ([tex]A = 5[/tex], [tex]B = -1[/tex], [tex]C = 9[/tex])

[tex]\delta = B^{2} - 4\cdot A\cdot C[/tex]

[tex]\delta = (-1)^{2}-4\cdot (5)\cdot (9)[/tex]

[tex]\delta = -179[/tex]

[tex]4\cdot y - 7 = 5\cdot x^{2}-x + 2 + 3\cdot y[/tex] has no real solutions.

4) [tex]y = (-x +4)^{2}[/tex]

First, we expand the expression:

[tex]y = x^{2}-8\cdot x + 16[/tex] ([tex]A = 1[/tex], [tex]B = -8[/tex], [tex]C = 16[/tex])

[tex]\delta = B^{2} - 4\cdot A\cdot C[/tex]

[tex]\delta = (-8)^{2}-4\cdot (1)\cdot (16)[/tex]

[tex]\delta = 0[/tex]

[tex]y = (-x +4)^{2}[/tex] has two equal real solutions.

We kindly invite to check this question on polynomials: https://brainly.com/question/15465256

ACCESS MORE