Respuesta :
Answer:
Rhodium has FCC structure.
Explanation:
Formula used :
[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]
where,
[tex]\rho[/tex] = density
Z = number of atom in unit cell
M = atomic mass
[tex](N_{A})[/tex] = Avogadro's number
a = edge length of unit cell
1) If it FCC cubic lattice
Number of atom in unit cell of FCC (Z) = 4
Atomic radius of Rh= 0.1345 nm = [tex]1.345\times 10^{-8} cm[/tex]
Edge length = a
For FCC, a = 2.828 × r :
a = [tex]2.828\times 1.345\times 10^{-8} cm=3.80366\times 10^{-8}cm[/tex]
Density of Rh= [tex]12.41 g/cm^3[/tex]
Atomic mass of Rh(M) = 102.91 g/mol
On substituting all the given values , we will get the value of 'a'.
[tex]12.41 g/cm^3=\frac{4\times 102.91 g/mol}{6.022\times 10^{23} mol^{-1}\times (3.80366\times 10^{-8}cm)^{3}}[/tex]
[tex]12.41 g/cm^3\approx 12.4214 g/cm^3[/tex]
2) If it BCC cubic lattice
Number of atom in unit cell of BCC (Z) = 2
Atomic radius of Rh= 0.1345 nm = [tex]1.345\times 10^{-8} cm[/tex]
Edge length = a
For BCC, a = 2.309 × r :
a = [tex]2.828\times 1.345\times 10^{-8} cm=3.105605\times 10^{-8}cm[/tex]
Density of Rh= [tex]12.41 g/cm^3[/tex]
Atomic mass of Rh(M) = 102.91 g/mol
On substituting all the given values , we will get the value of 'a'.
[tex]12.41 g/cm^3=\frac{2\times 102.91 g/mol}{6.022\times 10^{23} mol^{-1}\times (3.105605\times 10^{-8}cm)^{3}}[/tex]
[tex]12.41 g/cm^3[/tex] ≠ [tex]11.41 g/cm^3[/tex]
Rhodium has FCC structure.