Respuesta :
-4.
The equation for a line is y-y₁=m(x-x₁)
Using the following:
x₁= 1
x₂= -2
y₁= 1
y₂= 4
and slope, or m, is (x₂-x₁)/(y₂-y₁),
You can now fill out the equation!
y-(1)=-1(x-(1))
y= -x+2
And solve by substituting the 6, or x₃, into the equation to find the corresponding y value:
y= -(6)+2
y= -4
Therefore,
n=-4
The equation for a line is y-y₁=m(x-x₁)
Using the following:
x₁= 1
x₂= -2
y₁= 1
y₂= 4
and slope, or m, is (x₂-x₁)/(y₂-y₁),
You can now fill out the equation!
y-(1)=-1(x-(1))
y= -x+2
And solve by substituting the 6, or x₃, into the equation to find the corresponding y value:
y= -(6)+2
y= -4
Therefore,
n=-4
Answer:
[tex]n=-4[/tex]
Step-by-step explanation:
The line passes through the points [tex]\left ( 1,1 \right ),\:\left ( -2, 4\right ),\:\left ( 6,n \right )[/tex]
We know that equation of a line passing through two given points [tex]\left ( x_{1},y_{1} \right )[/tex] and [tex][tex]y-1=\frac{4-1}{-2-1}\left ( x- 1\right )[/tex][/tex]
Here, [tex]x_{1} =1, x_{2} =-2,y_{1} =1,y_{2} =4[/tex]
So, equation of the line is [tex]y-1=\frac{4-1}{-2-1}\left ( x- 1\right )[/tex]
[tex]y-1=\frac{3}{-3}\left ( x- 1\right )[/tex]
[tex]y-1=-x+1[/tex]
[tex]x+y=2[/tex]
So, the equation of the line is [tex]x+y=2[/tex].
As, the point [tex](6,n)[/tex] lies on the line, will satisfy the equation of the line.
[tex]6+n=2\:\:\left [\because x=6,y=n\right ][/tex]
[tex]n=-4[/tex]
Hence, the value of n is [tex]-4[/tex].