Which of the following is a polynomial with roots negative square root of 3, square root of 3, and 2?

x3 − 2x2 − 3x + 6
x3 + 2x2 − 3x − 6
x3 − 3x2 − 5x + 15
x3 + 3x2 − 5x − 15

Respuesta :

It's the first one. The way you figure that out is to turn each one of those roots into a factor of the polynomial, like this: if a root is 2, the factor is (x - 2). The factors of this polynomial are (x + sqrt(3)), (x - sqrt(3)), and (x - 2). When you multiply all of those together by FOILing, you get the first choice.

Answer:= [tex]x^3-2x^2-3x+6.[/tex]


Step-by-step explanation: Given roots of the polynomial [tex]-\sqrt{3} , \sqrt{3} , 2.[/tex]

Therefore, factors of the polynomial with given roots would be

[tex](x-\sqrt{3}), (x+\sqrt{3}), (x-2)[/tex].

Multiplying those factors.

[tex](x-\sqrt{3})(x+\sqrt{3})(x-2)[/tex].

[tex]\mathrm{Expand}\:\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=x^2-\left(\sqrt{3}\right)^2[/tex]

[tex]=x^2-3[/tex]

[tex]\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-2\right)=\left(x^2-3\right)\left(x-2\right)[/tex]

[tex]\mathrm{Expand}\:\left(x^2-3\right)\left(x-2\right)[/tex]

[tex]=x^3-2x^2-3x+3\cdot \:2[/tex]

[tex]=x^3-2x^2-3x+6[/tex]

Therefore, correct option is first option x^3-2x^2-3x+6.

ACCESS MORE