Answer:
0.64814 cm
Explanation:
[tex]n_1[/tex] = Refractive index of air = 1
[tex]n_2[/tex] = Refractive index of aqueous humor = 1.35
u = Object distance = [tex]\infty[/tex]
v = Image distance = 25 mm
R = Radius of curvature of the cornea
Lens equation
[tex]\dfrac{n_2-n_1}{R}=\dfrac{n_1}{u}+\dfrac{n_2}{v}\\\Rightarrow \dfrac{1.35-1}{R}=\dfrac{1}{\infty}+\dfrac{1.35}{2.5}\\\Rightarrow \dfrac{1.35-1}{R}=\dfrac{1.35}{2.5}\\\Rightarrow \dfrac{0.35}{R}=\dfrac{1.35}{2.5}\\\Rightarrow R=\dfrac{0.35\times 2.5}{1.35}\\\Rightarrow R=0.64814\ cm[/tex]
Radius of curvature of the cornea is 0.64814 cm