In right triangle RST below, altitude SV is drawn to hypotenuse RT. If RV =4.1 and TV =10.2,what is the length of ST to the nearest length? 1. 7.7 2. 6.5 3. 12.1 4. 11.0
![In right triangle RST below altitude SV is drawn to hypotenuse RT If RV 41 and TV 102what is the length of ST to the nearest length 1 77 2 65 3 121 4 110 class=](https://us-static.z-dn.net/files/d30/f9d390a3e85a60cb73ae00f006c6ced8.png)
12.1 (option 3)
Explanation:We would apply geometric mean formula:
[tex]\frac{leg}{TV}=\frac{RT}{\text{leg}}[/tex]RV = 4.1
TV =10.2
We have 2 legs: ST and SR but since we are looking for ST:
ST = leg
RT = RV + TV = 4.1 + 10.2 = 14.3
[tex]\begin{gathered} \frac{ST}{10.2}=\frac{14.3}{ST} \\ \text{cross multiply:} \\ ST(ST)\text{ = 10.2(14.3)} \\ ST^2\text{ = }145.86 \end{gathered}[/tex][tex]\begin{gathered} \text{square root both sides:} \\ \sqrt[]{ST^2}\text{ = }\sqrt[]{145.86} \\ ST\text{ = 12.077} \end{gathered}[/tex]To the nearest tenth, ST is 12.1 (option 3)