Determine the domain of the function (fog) (x) where f(x) = 3x-1/x-4 and g(x)=x+1/x
![Determine the domain of the function fog x where fx 3x1x4 and gxx1x class=](https://us-static.z-dn.net/files/d30/da63e3c7d75270ec3275b7d5a7936d73.jpg)
Answer:
[tex](-\infty,0)\cup(0, \frac{1}{3})\cup (\frac{1}{3},\infty)[/tex]
Step-by-step explanation:
The given functions are [tex]f(x)=\frac{3x-1}{x-4}[/tex] and [tex]g(x)=\frac{x+1}{x}[/tex] .
We now composed the two functions to find:
[tex](f\circ g)(x)=f(g(x))[/tex]
[tex]\implies (f\circ g)(x)=f(\frac{x+1}{x})[/tex]
[tex]\implies (f\circ g)(x)=\frac{3(\frac{x+1}{x})+1}{\frac{x+1}{x}-4}[/tex]
[tex]\implies (f\circ g)(x)=\frac{4x+3}{1-3x}[/tex]
This function is defined if the denominator is not zero.
[tex]1-3x\ne0[/tex]
[tex]x\ne\frac{1}{3}[/tex]
We write this in interval notation as:
[tex](-\infty,\frac{1}{3})\cup (\frac{1}{3},\infty)[/tex]
We need to be cautious here as x=0 is not in the domain of g(x).
Therefore the domain of [tex](f\circ g)(x)[/tex] is
[tex](-\infty,0)\cup(0, \frac{1}{3})\cup (\frac{1}{3},\infty)[/tex]