The slope - Intercept form of the equation of a line is written as:
y = mx + c...........................(1)
where m is the slope and
c is the intercept
the equation given in this task is:
y = -2x - 1..........................(2)
Comparing equations (1) and (2)
m = -2
That is the slope of the line = -2
A line perpendicular to the line y = -2x - 1 will have a slope:
[tex]\begin{gathered} m_1=\text{ }\frac{-1}{m} \\ m_1=\text{ }\frac{-1}{-2} \\ m_1=\text{ }\frac{1}{2} \end{gathered}[/tex]The equation of the perpendicular line will be:
[tex]y-y_1=m_1(x-x_1)[/tex]The point through which the line passes is (-10, 4)
That is, x₁ = -10, y₁ = 4
The equation of the perpendicular line becomes:
[tex]\begin{gathered} y\text{ - 4 = }\frac{1}{2}(x\text{ - (-10))} \\ y\text{ - 4 = }\frac{1}{2}(x\text{ + 10)} \\ y-\text{ 4 = }\frac{x}{2}+\text{ }\frac{10}{2} \\ y\text{ - 4 = }\frac{x}{2}\text{ + 5} \\ y\text{ = }\frac{x}{2}\text{ + 5 + 4} \\ y\text{ = }\frac{x}{2}\text{ + 9} \\ y\text{ = }\frac{1}{2}x\text{ + 9} \end{gathered}[/tex]