❣️❣️URGENT❣️❣️
Please helppppp!
(Sorry if it’s a bit hard to read)
![URGENT Please helppppp Sorry if its a bit hard to read class=](https://us-static.z-dn.net/files/d29/9ef2cd23c5c4799867918d5405192d71.jpeg)
Answer:
Answer is in explanation.
Step-by-step explanation:
Part A:
The [tex]x[/tex]-coordinate of the intersection of the curves for the equations [tex]y=4^{-x}[/tex] and [tex]y=2^{x+3}[/tex] is the same as the solution to [tex]4^{-x}=2^{x+3}[/tex] because the equation [tex]4^{-x}=2^{x+3}[/tex] is the result of finding when (for what [tex]x[/tex]'s) the [tex]y[/tex]'s are the same for the the equations [tex]y=4^{-x}[/tex] and [tex]y=2^{x+3}[/tex].
Part B:
Table for [tex]y=4^{-x}[/tex]:
[tex]x[/tex] | [tex]y=4^{-x}[/tex] | [tex](x,y=4^{-x})[/tex] |
-3 | [tex]y=4^{-(-3)}=4^{3}=64[/tex] | [tex](-3,64)[/tex] |
-2 | [tex]y=4^{-(-2)}=4^{2}=16[/tex] | [tex](-2,16)[/tex] |
-1 | [tex]y=4^{-(-1)}=4^{1}=4[/tex] | [tex](-1,4)[/tex]
0 | [tex]y=4^{-(0)}=4^{0}=1[/tex] | [tex](0,1)[/tex]
1 | [tex]y=4^{-(1)}=4^{-1}=\frac{1}{4}[/tex] | [tex](1,\frac{1}{4})[/tex]
2 | [tex]y=4^{-(2)}=4^{-2}=\frac{1}{16}[/tex] | [tex](2,\frac{1}{16})[/tex]
3 | [tex]y=4^{-(3)}=4^{-3}=\frac{1}{64}[/tex] | [tex](3,\frac{1}{64})[/tex]
Table for [tex]y=2^{x+3}[/tex]:
[tex]x[/tex] | [tex]y=2^{x+3}[/tex] | [tex](x,y=2^{x+3})[/tex] |
-3 | [tex]y=2^{-3+3}=2^{0}=1[/tex] | [tex](-3,1)[/tex]
-2 | [tex]y=2^{-2+3}=2^{1}=2[/tex] | [tex](-2,2)[/tex]
-1 | [tex]y=2^{-1+3}=2^{2}=4[/tex] | [tex](-1,4)[/tex]
0 | [tex]y=2^{0+3}=2^{3}=8[/tex] | [tex](0,8)[/tex]
1 | [tex]y=2^{1+3}=2^{4}=16[/tex] | [tex](1,16)[/tex]
2 | [tex]y=2^{2+3}=2^{5}=32[/tex] | [tex](2,32)[/tex]
3 | [tex]y=2^{3+3}=2^{6}=64[/tex] | [tex](3,64)[/tex]
You can see in the two tables the y-coordinates are the same value of [tex]4[/tex] when [tex]x=-1[/tex]. So basically the common point in both tables is [tex](-1,4)[/tex] so [tex](-1,4)[/tex] is a solution.
Part C:
I'm going to graph both [tex]y=4^{-x}[/tex] and [tex]y=2^{x+3}[/tex] on the same coordinate plane. I will then find where they will intersect.
I'm going to graph my points from the table to [tex]y=4^{-x}[/tex] and [tex]y=2^{x+3}[/tex].
This can be seen in my drawing.
I graphed [tex]y=4^{-x}[/tex] in blue.
I graphed [tex]y=2^{x+3}[/tex] in red.
Another way:
An algebraic approach:
[tex]4^{-x}=2^{x+3}[/tex]
[tex](2^2)^{-x}=2^{x+3}[/tex] (since [tex]4=2^2[/tex] and now the bases on both side are the same)
[tex]2^{-2x}=2^{x+3}[/tex]
[tex]-2x=x+3[/tex] (since [tex]2^{a}=2^{b}[/tex] then [tex]a=b[/tex])
[tex]-3x=3[/tex] (subtracted [tex]x[/tex] on both sides)
[tex]x=-1[/tex] (divided both sides by [tex]-3[/tex])
The solution is [tex]x=-1[/tex].