Solve the following for x. REDUCE(x+1)(x+1) + 2x = 2

To solve the equation for x first, apply the distributive property to the left side:
[tex]\begin{gathered} \frac{1}{3}(x+1)+2x=2 \\ \frac{1}{3}x+\frac{1}{3}+2x=2 \end{gathered}[/tex]Now add similar terms on the left side of the equation
[tex]\frac{7}{3}x+\frac{1}{3}=2[/tex]Subtract 1/3 from both sides of the equation
[tex]\begin{gathered} \frac{7}{3}x+\frac{1}{3}-\frac{1}{3}=2-\frac{1}{3} \\ \frac{7}{3}x=\frac{5}{3} \end{gathered}[/tex]Multiply by 3 on both sides of the equation
[tex]\begin{gathered} 3\cdot\frac{7}{3}x=\frac{5}{3}\cdot3 \\ 7x=5 \end{gathered}[/tex]Finally, divide by 7 into both sides of the equation
[tex]\begin{gathered} \frac{7x}{7}=\frac{5}{7} \\ x=\frac{5}{7} \end{gathered}[/tex]