Respuesta :

To solve the equation for x first, apply the distributive property to the left side:

[tex]\begin{gathered} \frac{1}{3}(x+1)+2x=2 \\ \frac{1}{3}x+\frac{1}{3}+2x=2 \end{gathered}[/tex]

Now add similar terms on the left side of the equation

[tex]\frac{7}{3}x+\frac{1}{3}=2[/tex]

Subtract 1/3 from both sides of the equation

[tex]\begin{gathered} \frac{7}{3}x+\frac{1}{3}-\frac{1}{3}=2-\frac{1}{3} \\ \frac{7}{3}x=\frac{5}{3} \end{gathered}[/tex]

Multiply by 3 on both sides of the equation

[tex]\begin{gathered} 3\cdot\frac{7}{3}x=\frac{5}{3}\cdot3 \\ 7x=5 \end{gathered}[/tex]

Finally, divide by 7 into both sides of the equation

[tex]\begin{gathered} \frac{7x}{7}=\frac{5}{7} \\ x=\frac{5}{7} \end{gathered}[/tex]

RELAXING NOICE
Relax