[tex]\\ \sf\longmapsto {\displaystyle{\int}}(sinx.cosx.tanx) dx[/tex]
[tex]\\ \sf\longmapsto {\displaystyle{\int}}sinx.\cancel{cosx}.\dfrac{sinx}{\cancel{cosx}}dx[/tex]
[tex]\\ \sf\longmapsto {\displaystyle{\int}}sinx.sinx \:dx[/tex]
[tex]\\ \sf\longmapsto {\displaystyle{\int}}sin^2x\:dx[/tex]
[tex]\\ \sf\longmapsto {\displaystyle{\int}}\dfrac{1-cos2x}{2}dx[/tex]
[tex]\\ \sf\longmapsto \dfrac{1}{2}{\displaystyle{\int}}1-cos2x[/tex]
[tex]\\ \sf\longmapsto \dfrac{1}{2}{\displaystyle{\int}}dx-\dfrac{1}{2}{\displaystyle{\int}}cos2x[/tex]
[tex]\\ \sf\longmapsto \dfrac{1}{2}x-\dfrac{1}{2}{\displaystyle{\int}}cos2xdx[/tex]
Here Taking
Then
Now put values
[tex]\\ \sf\longmapsto \dfrac{1}{2}du=dx[/tex]
Then
[tex]\\ \sf\longmapsto \dfrac{1}{2}x-\dfrac{1}{2}{\displaystyle{\int}}cos2xdx[/tex]
[tex]\\ \sf\longmapsto \dfrac{1}{2}x-\dfrac{1}{2}\times \dfrac{1}{2}{\displaystyle{\int}}cosudu[/tex]
[tex]\\ \sf\longmapsto \dfrac{1}{2}x-\dfrac{1}{4}{\displaystyle{\int}}cosudu[/tex]
[tex]\\ \sf\longmapsto \dfrac{1}{2}x-\dfrac{1}{4}sin u[/tex]
[tex]\\ \sf\longmapsto\underline{\boxed{\bf{\dfrac{1}{2}x-\dfrac{1}{4}sin 2x+C}}}[/tex]