Answer:
[tex](-14,4)[/tex]
Step-by-step explanation:
Given
[tex](-14,12)[/tex] [tex]\to[/tex] [tex]y =f(x)[/tex]
[tex]g(x) = \frac{1}{3}f(x)[/tex]
Required
The corresponding point on [tex]y = g(x)[/tex]
[tex](-14,12)[/tex] [tex]\to[/tex] [tex]y =f(x)[/tex] means:
[tex]12 = f(-14)[/tex]
or
[tex]f(-14)=12[/tex]
[tex]g(x) = \frac{1}{3}f(x)[/tex] is calculated
[tex]g(-14) = \frac{1}{3} * f(-14)[/tex]
[tex]g(-14) = \frac{1}{3} * 12[/tex]
[tex]g(-14) = 4[/tex]
So, the corresponding point on [tex]y = g(x)[/tex] is: [tex](-14,4)[/tex]