Respuesta :
Answer:
Por favor, dame una captura de pantalla de la pregunta No entiendo esto gracias
Answer:
[tex]-2x+y=-3[/tex]
Step-by-step explanation:
Recall perpendicular lines have negative-reciprocal slopes. Since the equation [tex]2y+x=4[/tex] has a slope of [tex]-\frac{1}{2}[/tex] ([tex]y=-\frac{1}{2}x+2[/tex]), any line perpendicular to it will have a slope of [tex]-\frac{1}{-\frac{1}{2}}=2[/tex].
Therefore, we have the line:
[tex]y=2x+b[/tex] where [tex]b[/tex] is the y-intercept.
We can plug in the point it passes through to find the final equation:
[tex]1=2(2)+b,\\b=1-4,\\b=-3[/tex].
Therefore, the equation of the line perpendicular to [tex]2y+x=4[/tex] that passes through the point [tex](2, 1)[/tex] is:
[tex]y=2x-3[/tex] (slope-intercept form)
However, since the initial line given is in standard form, re-write this equation to standard form:
[tex]y=2x-3,\\y-2x=-3,\\\fbox{$-2x+y=-3$}[/tex].