Respuesta :
Complete Question
The complete question is shown on the first uploaded image
Answer:
The 95% confidence interval is [tex]-0.00870 <p_1 -p_2 < -0.007297[/tex]
Step-by-step explanation:
From the question we are told that
The first sample size is [tex]n_1 = 1068000[/tex]
The first proportion [tex]\r p_1 = 0.084[/tex]
The second sample size is [tex]n_2 = 1476000[/tex]
The second proportion is [tex]\r p_2 = 0.092[/tex]
Given that the confidence level is 95% then the level of significance is mathematically represented as
[tex]\alpha = (100 - 95)\%[/tex]
[tex]\alpha = 0.05[/tex]
From the normal distribution table we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] the value is
[tex]Z_{\frac{\alpha }{2} } =z_c= 1.96[/tex]
Now using the formula from the question to construct the 95% confidence interval we have
[tex](\r p_1 - \r p_2 )- z_c \sqrt{ \frac{\r p_1 \r q_1 }{n_1} + \frac{\r p_2 \r q_2 }{n_2} } <p_1 -p_2 < (\r p_1 - \r p_2 )+ z_c \sqrt{ \frac{\r p_1 \r q_1 }{n_1} + \frac{\r p_2 \r q_2 }{n_2} }[/tex]
Here [tex]\r q_1 = 1 - \r p_1[/tex]
=> [tex]\r q_1 = 1 - 0.084[/tex]
=> [tex]\r q = 0.916[/tex]
and
[tex]\r q_2 = 1 - \r p_2[/tex]
=> [tex]\r q_2 = 1 - 0.092[/tex]
=> [tex]\r q_2 = 0.908[/tex]
So
[tex](0.084 - 0.092 )- (1.96)* \sqrt{ \frac{0.092* 0.916 }{1068000} + \frac{0.084* 0.908 }{1476000} } <p_1 -p_2 < (0.084 - 0.092 )+ (1.96)* \sqrt{ \frac{0.084* 0.916 }{1068000} + \frac{0.092* 0.908 }{1476000} }[/tex]
[tex]-0.00870 <p_1 -p_2 < -0.007297[/tex]
![Ver imagen okpalawalter8](https://us-static.z-dn.net/files/d67/9c7639e0cc08b70e797ae9f4cf59eb64.png)