A past survey of students taking a standardized test revealed that ​% of the students were planning on studying engineering in college. In a recent survey of students taking the​ SAT, ​% of the students were planning to study engineering. Construct a ​% confidence interval for the difference between proportions by using the following inequality. Assume the samples are random and independent.

The confidence interval is __

Respuesta :

Complete Question

The  complete question is shown on the first uploaded image  

Answer:

The  95% confidence interval is  [tex]-0.00870 <p_1 -p_2 < -0.007297[/tex]

Step-by-step explanation:

From the question we are told that

     The first sample  size  is  [tex]n_1 = 1068000[/tex]

     The first proportion  [tex]\r p_1 = 0.084[/tex]

     The second  sample size is  [tex]n_2 = 1476000[/tex]

     The  second  proportion is  [tex]\r p_2 = 0.092[/tex]

Given that the confidence level is  95%  then the level of significance is mathematically represented as

      [tex]\alpha = (100 - 95)\%[/tex]

     [tex]\alpha = 0.05[/tex]

From the normal distribution table  we obtain the critical value of  [tex]\frac{ \alpha }{2}[/tex]  the value is  

      [tex]Z_{\frac{\alpha }{2} } =z_c= 1.96[/tex]

Now using the formula from the question to construct the 95% confidence interval we have  

  [tex](\r p_1 - \r p_2 )- z_c \sqrt{ \frac{\r p_1 \r q_1 }{n_1} + \frac{\r p_2 \r q_2 }{n_2} } <p_1 -p_2 < (\r p_1 - \r p_2 )+ z_c \sqrt{ \frac{\r p_1 \r q_1 }{n_1} + \frac{\r p_2 \r q_2 }{n_2} }[/tex]

Here [tex]\r q_1 = 1 - \r p_1[/tex]

  =>   [tex]\r q_1 = 1 - 0.084[/tex]

 =>    [tex]\r q = 0.916[/tex]

and  

   [tex]\r q_2 = 1 - \r p_2[/tex]

 =>   [tex]\r q_2 = 1 - 0.092[/tex]

=>   [tex]\r q_2 = 0.908[/tex]

So  

 [tex](0.084 - 0.092 )- (1.96)* \sqrt{ \frac{0.092* 0.916 }{1068000} + \frac{0.084* 0.908 }{1476000} } <p_1 -p_2 < (0.084 - 0.092 )+ (1.96)* \sqrt{ \frac{0.084* 0.916 }{1068000} + \frac{0.092* 0.908 }{1476000} }[/tex]

  [tex]-0.00870 <p_1 -p_2 < -0.007297[/tex]

 

Ver imagen okpalawalter8
ACCESS MORE