The first steps in writing f(x) = 4x2 + 48x + 10 in vertex form are shown. f(x) = 4(x2 + 12x) + 10 (twelve-halves) squared = 36 What is the function written in vertex form?

Respuesta :

Answer:

[tex]f(x)=4(x+6)^2-134[/tex]

Step-by-step explanation:

We are required to write the function[tex]f(x) = 4x^2 + 48x + 10[/tex] in vertex form.

First, bring the constant to the left-hand side.

[tex]f(x) -10= 4x^2 + 48x[/tex]

Factorize the right hand side.

[tex]f(x) -10= 4(x^2 + 12x)[/tex]

Take note of the factored term(4) and write it in the form below.

[tex]f(x) -10+4\Box= 4(x^2 + 12x+\Box)[/tex]

[tex]\Box = (\frac{\text{Coefficient of x}}{2} )^2\\\\\text{Coefficient of x}=12\\\\\Box = (\frac{12}{2} )^2 =6^2=36[/tex]

Substitute 36 for the boxes.

[tex]f(x) -10+4\boxed{36}= 4(x^2 + 12x+\boxed{36})[/tex]

[tex]f(x) -10+144= 4(x^2 + 12x+6^2)[/tex]

[tex]f(x) +134= 4(x+6)^2\\f(x)=4(x+6)^2-134[/tex]

The function written in vertex form is [tex]f(x)=4(x+6)^2-134[/tex]

Answer:

C

Step-by-step explanation:

I just finished the unit test on Edge. and got a 100% and I selected "c" as my answer.

ACCESS MORE