Answer:
The conversion in the real reactor is = 88%
Explanation:
conversion = 98% = 0.98
process rate = 0.03 m^3/s
length of reactor = 3 m
cross sectional area of reactor = 25 dm^2
pulse tracer test results on the reactor :
mean residence time ( tm) = 10 s and variance (∝2) = 65 s^2
note: space time (t) =
t = [tex]\frac{A*L}{Vo}[/tex] Vo = flow metric flow rate , L = length of reactor , A = cross sectional area of the reactor
therefore (t) = [tex]\frac{25*3*10^{-2} }{0.03}[/tex] = 25 s
since the reaction is in first order
X = 1 - [tex]e^{-kt}[/tex]
[tex]e^{-kt}[/tex] = 1 - X
kt = In [tex]\frac{1}{1-X}[/tex]
k = In [tex]\frac{1}{1-X}[/tex] / t
X = 98% = 0.98 (conversion in PFR ) insert the value into the above equation then
K = 0.156 [tex]s^{-1}[/tex]
Calculating Da for a closed vessel
; Da = tk
= 25 * 0.156 = 3.9
calculate Peclet number Per using this equation
0.65 = [tex]\frac{2}{Per} - \frac{2}{Per^2} ( 1 - e^{-per})[/tex]
therefore
[tex]\frac{2}{Per} - \frac{2}{Per^2} (1 - e^{-per}) - 0.65 = 0[/tex]
solving the Non-linear equation above( Per = 1.5 )
Attached is the Remaining part of the solution