Answer:
(a) E= 3.36×10−2 V +( 3.30×10−4 V/s3 )t3
(b) [tex]I=0.0085\ A[/tex]
Explanation:
Given:
(a)
we know, according to Faraday's Law:
[tex]emf=n.\frac{d\phi}{dt}[/tex]
where:
[tex]d \phi=[/tex] change in associated magnetic flux
[tex]\phi= B.A[/tex]
where:
A= area enclosed by the coil
Here
[tex]A=\pi.r^2[/tex]
[tex]A=\pi\times 0.0395^2[/tex]
[tex]A=0.0049\ m^2[/tex]
[tex]\therefore \phi=((1.2\times 10^{-2})t+(3.45\times 10^{-5})t^4)\times 0.0049[/tex]
So, emf:
[tex]emf= 520\times \frac{d}{dt} [((1.2\times 10^{-2})t+(3.45\times 10^{-5})t^4)\times 0.0049][/tex]
[tex]emf= 520\times 0.0049\times \frac{d}{dt} [(1.2\times 10^{-2})t+(3.45\times 10^{-5})t^4)][/tex]
[tex]emf= 2.548\times [0.012+(13.8\times 10^{-5})t^3)][/tex]
[tex]emf= 0.0306+3.516\times 10^{-4}\ t^3[/tex]
(b)
Given:
[tex]t_0=5.25\ s[/tex]
Now, emf at given time:
[tex]emf=4.7755\times 10^{-2}\ V[/tex]
∴Current
[tex]I=\frac{emf}{R}[/tex]
[tex]I=\frac{4.7755\times 10^{-2}}{560}[/tex]
[tex]I=8.5\times 10^{-5} A[/tex]