A coil 3.95 cm radius, containing 520 turns, is placed in a uniform magnetic field that varies with time according to B=( 1.20×10−2 T/s )t+( 3.45×10−5 T/s4 )t4. The coil is connected to a 560-Ω resistor, and its plane is perpendicular to the magnetic field. You can ignore the resistance of the coil.
a-)Find the magnitude of the induced emf in the coil as a function of time.

Find the magnitude of the induced emf in the coil as a function of time.

E= 1.07×10−2 V +( 1.05×10−4 V/s3 )t3
E= 3.36×10−2 V +( 8.26×10−5 V/s3 )t3
E= 3.36×10−2 V +( 3.30×10−4 V/s3 )t3
E= 1.07×10−2 V +( 3.30×10−4 V/s3 )t3
b-)What is the current in the resistor at time t0 = 5.25 s ?

Respuesta :

Answer:

(a) E= 3.36×10−2 V +( 3.30×10−4 V/s3 )t3

(b) [tex]I=0.0085\ A[/tex]

Explanation:

Given:

  • radius if the coil, [tex]r=0.0395\ m[/tex]
  • no. of turns in the coil, [tex]n=520[/tex]
  • variation of the magnetic field in the coil, [tex]B=(1.2\times 10^{-2})t+(3.45\times 10^{-5})t^4[/tex]
  • resistor connected to the coil, [tex]R=560\ \Omega[/tex]

(a)

we know, according to Faraday's Law:

[tex]emf=n.\frac{d\phi}{dt}[/tex]

where:

[tex]d \phi=[/tex] change in associated magnetic flux

[tex]\phi= B.A[/tex]

where:

A= area enclosed by the coil

Here

[tex]A=\pi.r^2[/tex]

[tex]A=\pi\times 0.0395^2[/tex]

[tex]A=0.0049\ m^2[/tex]

[tex]\therefore \phi=((1.2\times 10^{-2})t+(3.45\times 10^{-5})t^4)\times 0.0049[/tex]

So, emf:

[tex]emf= 520\times \frac{d}{dt} [((1.2\times 10^{-2})t+(3.45\times 10^{-5})t^4)\times 0.0049][/tex]

[tex]emf= 520\times 0.0049\times \frac{d}{dt} [(1.2\times 10^{-2})t+(3.45\times 10^{-5})t^4)][/tex]

[tex]emf= 2.548\times [0.012+(13.8\times 10^{-5})t^3)][/tex]

[tex]emf= 0.0306+3.516\times 10^{-4}\ t^3[/tex]

(b)

Given:

[tex]t_0=5.25\ s[/tex]

Now, emf at given time:

[tex]emf=4.7755\times 10^{-2}\ V[/tex]

∴Current

[tex]I=\frac{emf}{R}[/tex]

[tex]I=\frac{4.7755\times 10^{-2}}{560}[/tex]

[tex]I=8.5\times 10^{-5} A[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico