Answer:
3[tex]\sqrt{3}[/tex]
Step-by-step explanation:
Using Pythagoras' identity on the right triangle.
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides.
let x be the length of the other leg, then
x² + 3² = 6², that is
x² + 9 = 36 ( subtract 9 from both sides )
x² = 27 ( take the square root of both sides )
x = [tex]\sqrt{27}[/tex] = [tex]\sqrt{9(3)}[/tex] = [tex]\sqrt{9}[/tex] × [tex]\sqrt{3}[/tex] = 3[tex]\sqrt{3}[/tex] ← exact value