I suppose you mean
[tex]\vec F(x,y,z)=\left\langle\dfrac zx,\dfrac zy,\ln(xy)\right\rangle[/tex]
Showing that [tex]f(x,y,z)=z\ln(xy)[/tex] has gradient equal to [tex]\vec F[/tex] is trivial.
By virtue of the existence of [tex]f[/tex], the gradient theorem applies here, so
[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\int_{(12,4,2)}^{(2,2,3)}\nabla f(x,y,z)\cdot\mathrm d\vec r=f(2,2,3)-f(12,4,2)=3\ln 4-2\ln48=\boxed{-\ln36}[/tex]
The requirement that [tex]x>0[/tex] and [tex]y>0[/tex] is a consequence of the domain of the logarithm function. Both have to be positive in order for [tex]\ln(xy)[/tex] to exist.