Respuesta :
Answer:
B) 25
Step-by-step explanation:
Given exponential function:
[tex]f(x)=3(5)^x[/tex]
The growth factor between [tex]x=1[/tex] and [tex]x=3[/tex] is 25.
To find the growth factor between [tex]x=5[/tex] and [tex]x=7[/tex]
Solution:
The growth factor of an exponential function in the interval [tex]x=a[/tex] and [tex]x=b[/tex] is given by :
[tex]G=\frac{f(b)}{f(a)}[/tex]
We can check this by plugging in the given points.
The growth factor between [tex]x=1[/tex] and [tex]x=3[/tex] would be calculated as:
[tex]G=\frac{f(3)}{f(1)}[/tex]
[tex]f(3)=3(5)^3[/tex]
[tex]f(1)=3(5)^1[/tex]
Plugging in values.
[tex]G=\frac{3(5)^3}{3(5)^1}[/tex]
[tex]G=\frac{(5)^3}{(5)^1}[/tex] (On canceling the common terms)
[tex]G=(5)^{(3-1)}[/tex] (Using quotient property of exponents [tex]\frac{a^b}{a^c}=a^{(b-c)}[/tex] )
[tex]G=(5)^{2}[/tex]
∴ [tex]G=25[/tex]
Similarly the growth factor between [tex]x=5[/tex] and [tex]x=7[/tex] would be:
[tex]G=\frac{f(7)}{f(5)}[/tex]
[tex]f(7)=3(5)^7[/tex]
[tex]f(5)=3(5)^5[/tex]
Plugging in values.
[tex]G=\frac{3(5)^7}{3(5)^5}[/tex]
[tex]G=\frac{(5)^7}{(5)^5}[/tex] (On canceling the common terms)
[tex]G=(5)^{(7-5)}[/tex] (Using quotient property of exponents [tex]\frac{a^b}{a^c}=a^{(b-c)}[/tex] )
[tex]G=(5)^{2}[/tex]
∴ [tex]G=25[/tex]
Thus, the growth factor remains the same which is =25.
Answer:
25 B
Step-by-step explanation:
What the other person said.