The exponential function f(x) = 3(5)x grows by a factor of 25 between x = 1 and x = 3. What factor does it grow by between x = 5 and x = 7?

A) 5
B) 25
C) 125
D) 625

Respuesta :

Answer:

B) 25

Step-by-step explanation:

Given exponential function:

[tex]f(x)=3(5)^x[/tex]

The growth factor between [tex]x=1[/tex] and [tex]x=3[/tex] is 25.

To find the growth factor between [tex]x=5[/tex] and [tex]x=7[/tex]

Solution:

The growth factor of an exponential function in the interval [tex]x=a[/tex] and [tex]x=b[/tex] is given by :

[tex]G=\frac{f(b)}{f(a)}[/tex]

We can check this by plugging in the given points.

The growth factor between [tex]x=1[/tex] and [tex]x=3[/tex] would be calculated as:

[tex]G=\frac{f(3)}{f(1)}[/tex]

[tex]f(3)=3(5)^3[/tex]

[tex]f(1)=3(5)^1[/tex]

Plugging in values.

[tex]G=\frac{3(5)^3}{3(5)^1}[/tex]

[tex]G=\frac{(5)^3}{(5)^1}[/tex] (On canceling the common terms)

[tex]G=(5)^{(3-1)}[/tex]  (Using quotient property of exponents [tex]\frac{a^b}{a^c}=a^{(b-c)}[/tex] )

[tex]G=(5)^{2}[/tex]

∴ [tex]G=25[/tex]  

Similarly the growth factor between [tex]x=5[/tex] and [tex]x=7[/tex] would be:

[tex]G=\frac{f(7)}{f(5)}[/tex]

[tex]f(7)=3(5)^7[/tex]

[tex]f(5)=3(5)^5[/tex]

Plugging in values.

[tex]G=\frac{3(5)^7}{3(5)^5}[/tex]

[tex]G=\frac{(5)^7}{(5)^5}[/tex] (On canceling the common terms)

[tex]G=(5)^{(7-5)}[/tex]  (Using quotient property of exponents [tex]\frac{a^b}{a^c}=a^{(b-c)}[/tex] )

[tex]G=(5)^{2}[/tex]

∴ [tex]G=25[/tex]  

Thus, the growth factor remains the same which is  =25.

Answer:

25 B

Step-by-step explanation:

What the other person said.