Respuesta :

tlbi

Answer:

1. Statement: ∠RVS ≅ ∠SVT

2. Statement: m∠RVS + m∠SVT = 180°

3. Statement: m∠RVS + m∠RVS = 180°

4. Statement: m∠RVS = 90°

5. Statement: Line RT ⊥ Line SU

1. Reason: Given

2. Reason: Angles forming a linear pair sum of 180°

3. Reason: Substitution

4. Reason: Algebra

5. Reason: Defintion of perpendicular lines

Step-by-step explanation:

First, write the given (line 1).

Next, use the fact that angles forming a linear pair sum to 180° to show m∠RVS + m∠SVT = 180° (line 2).

Next, substitute m∠RVS for m∠SVT in m∠RVS + m∠SVT=180° (line 3).

Next, use algebra to show m∠RVS = 90° (line 4).

Finally, use the definition of perpendicular lines to prove that Line RT ⊥ Line SU (line 5).

Hope this helps :D

Answer:

1. Statement: ∠RVS ≅ ∠SVT

2. Statement: m∠RVS + m∠SVT = 180°

3. Statement: m∠RVS + m∠RVS = 180°

4. Statement: m∠RVS = 90°

5. Statement: Line RT ⊥ Line SU

1. Reason: Given

2. Reason: Angles forming a linear pair sum of 180°

3. Reason: Substitution

4. Reason: Algebra

5. Reason: Defintion of perpendicular lines

Otras preguntas