Prove that line RT⟂ line SU.
![Prove that line RT line SU class=](https://us-static.z-dn.net/files/d93/4ef9cff684e84331cc8b9f0f164e2848.png)
Answer:
1. Statement: ∠RVS ≅ ∠SVT
2. Statement: m∠RVS + m∠SVT = 180°
3. Statement: m∠RVS + m∠RVS = 180°
4. Statement: m∠RVS = 90°
5. Statement: Line RT ⊥ Line SU
1. Reason: Given
2. Reason: Angles forming a linear pair sum of 180°
3. Reason: Substitution
4. Reason: Algebra
5. Reason: Defintion of perpendicular lines
Step-by-step explanation:
First, write the given (line 1).
Next, use the fact that angles forming a linear pair sum to 180° to show m∠RVS + m∠SVT = 180° (line 2).
Next, substitute m∠RVS for m∠SVT in m∠RVS + m∠SVT=180° (line 3).
Next, use algebra to show m∠RVS = 90° (line 4).
Finally, use the definition of perpendicular lines to prove that Line RT ⊥ Line SU (line 5).
Hope this helps :D
Answer:
1. Statement: ∠RVS ≅ ∠SVT
2. Statement: m∠RVS + m∠SVT = 180°
3. Statement: m∠RVS + m∠RVS = 180°
4. Statement: m∠RVS = 90°
5. Statement: Line RT ⊥ Line SU
1. Reason: Given
2. Reason: Angles forming a linear pair sum of 180°
3. Reason: Substitution
4. Reason: Algebra
5. Reason: Defintion of perpendicular lines