Respuesta :

Question:

2x^2 + 5x + 3

What are the factors of the polynomial?

(2x+3)(x+1)

(2x-3)(x-1)

(3x+2)(x+1)

(3x-2)(x-1)

Answer:

Option A

The factors are:

[tex]2x^2+5x+3 = (2x+3)(x+1)[/tex]

Solution:

Given that, the quadratic equation is:

[tex]2x^2 + 5x + 3[/tex]

We have to find the factors of polynomial

Find the factors:

[tex]2x^2+5x+3[/tex]

Split 5x as 2x and 3x

[tex]2x^2+5x+3 = 2x^2 +2x + 3x + 3[/tex]

[tex]\mathrm{Break\:the\:expression\:into\:groups}[/tex]

[tex]2x^2+5x+3=\left(2x^2+2x\right)+\left(3x+3\right)[/tex]

[tex]\mathrm{Factor\:out\:}2x\mathrm{\:from\:}2x^2+2x\mathrm{:\quad }2x\left(x+1\right)[/tex]

Thus we get,

[tex]2x^2+5x+3 = 2x(x+1) + (3x+3)[/tex]

[tex]\mathrm{Factor\:out\:}3\mathrm{\:from\:}3x+3\mathrm{:\quad }3\left(x+1\right)[/tex]

Thus we get,

[tex]2x^2+5x+3 = 2x(x+1) + 3(x+1)[/tex]

[tex]\mathrm{Factor\:out\:common\:term\:}x+1[/tex]

Thus we get,

[tex]2x^2+5x+3 = (2x+3)(x+1)[/tex]

Thus the factors are found for given polynomial

Answer:

The answer is A

Step-by-step explanation:

ACCESS MORE