Respuesta :
The question is incomplete, here is the complete question:
Using this information together with the standard enthalpies of formation of [tex]O_2(g)[/tex], [tex]CO_2(g)[/tex], and [tex]H_2O(l)[/tex] from Appendix C. Calculate the standard enthalpy of formation of acetone.
Complete combustion of 1 mol of acetone [tex](C_3H_6O)[/tex] liberates 1790 kJ:
[tex]C_3H_6O(l)+4O_2(g)\rightarrow 3CO_2(g)+3H_2O(l);\Delta H^o=-1790kJ[/tex]
Answer: The enthalpy of the formation of [tex]CO_2(g)[/tex] is coming out to be -247.9 kJ/mol
Explanation:
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as [tex]\Delta H^o[/tex]
The equation used to calculate enthalpy change is of a reaction is:
[tex]\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}][/tex]
For the given chemical reaction:
[tex]C_3H_6O(l)+4O_2(g)\rightarrow 3CO_2(g)+3H_2O(l)[/tex]
The equation for the enthalpy change of the above reaction is:
[tex]\Delta H^o_{rxn}=[(3\times \Delta H^o_f_{(CO_2(g))})+(3\times \Delta H^o_f_{(H_2O(l))})]-[(1\times \Delta H^o_f_{(C_3H_6O(l))})+(4\times \Delta H^o_f_{(O_2(g))})][/tex]
We are given:
[tex]\Delta H^o_f_{(H_2O(l))}=-285.8kJ/mol\\\Delta H^o_f_{(O_2(g))}=0kJ/mol\\\Delta H^o_f_{(CO_2(g))}=-393.5kJ/mol\\\Delta H^o_{rxn}=-1790kJ[/tex]
Putting values in above equation, we get:
[tex]-1790=[(3\times {(-393.5)})+(3\times (-285.8))]-[(1\times \Delta H^o_f_{(C_3H_6O(g))})+(4\times (0))]\\\\\Delta H^o_f_{(C_3H_6O(g))}=-247.9kJ/mol[/tex]
Hence, the enthalpy of the formation of [tex]C_3H_6O(g)[/tex] is coming out to be -247.9 kJ/mol.
