Answer:
468449163762.0812 W
Explanation:
m = Mass = [tex]\rhoV[/tex]
V = Volume =[tex]\dfrac{4}{3}\pi r^3[/tex]
r = Distance of sphere from isotropic point source of light = 0.5 m
R = Radius of sphere = 2 mm
[tex]\rho[/tex] = Density = 19 g/cm³
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
A = Area = [tex]\pi R^2[/tex]
I = Intensity = [tex]\dfrac{P}{4\pi r^2}[/tex]
g = Acceleration due to gravity = 9.81 m/s²
Force due to radiation is given by
[tex]F=\dfrac{IA}{c}\\\Rightarrow F=\dfrac{\dfrac{P}{4\pi r^2}{\pi R^2}}{c}\\\Rightarrow F=\dfrac{PR^2}{4r^2c}[/tex]
According to the question
[tex]F=mg\\\Rightarrow \dfrac{PR^2}{4r^2c}=\rho \dfrac{4}{3}\pi R^3g\\\Rightarrow P=\dfrac{16r^2\rho c\pi Rg}{3}\\\Rightarrow P=\dfrac{16\times 0.002\times 19000\times \pi\times 0.5^2\times 9.81\times 3\times 10^8}{3}\\\Rightarrow P=468449163762.0812\ W[/tex]
The power required of the light source is 468449163762.0812 W