Respuesta :
Answer:
13.50 J
Explanation:
Assuming no external forces acting during the collision, total momentum must be conserved, so we can write the following equation:
Δp = 0 ⇒ p₁ = p₀
Assuming that the mass moving to the east has positive speed, we can write:
p₀ (initial momentum) = 4.00 kg*2.00 m/s + 6.00kg*(-2,5 m/s) = -7.00 kg*m/s
p₁ (final momentum) = 4.00kg*vAm/s + 6.00kg*(0.5m/s) = -7.00 kg*m/s
Solving for vA, we have:
vA = -2.50 m/s
Now, we can find the initial and final kinetic energies, as follows:
Ki = 1/2*4.00kg*(2.00)²(m/s)² +1/2*6.00*(-2.50)²(m/s)² = 26.75 J
Kf= 1/2*4.00kg*(-2.50)²(m/s)² +1/2*6.00*(0.50)²(m/s)² = 13.25 J
⇒ ΔK = Kf-Ki = 13.25 J - 26.75 J = -13.50 J
So, the decrease in the total kinetic energy of the two blocks as a result of the collision is equal to 13.50 J.
The decrease in the total kinetic energy of the given blocks after the collision is 13.50 J.
From the conservation of motion,
[tex]p_i = p_f[/tex]
[tex]p_i[/tex] - total initial momentum
[tex]p_f[/tex] - total final momentum
So,
[tex]4.00\rm \ kg \times 2.00 \rm \ m/s + 6.00 \rm \ kg \ \times (-2,5 \rm \ m/s) = 4.00 \times \rm V_A\ kg \times \rm \ m/s + 6.00 \rm \ kg \rm \ (0.5 \ m/s)[/tex]
Solve for [tex]V_A[/tex], we get,
[tex]V_A[/tex] = -2.50 m/s
The decrease in total kinetic energy,
[tex]\Delta K = K_f - K_i[/tex]
Where,
[tex]K_i\\[/tex] - initial kinetic energy
[tex]K_f[/tex]- final kinetic energy
[tex]Ki = \dfrac 12\times 4.00 \rm \ kg\times (2.00)^2(m/s)^2 +\dfrac 12 \times 6.00 \times (-2.50)^2(m/s)^2 =\bold {26.75\rm \ J}[/tex]
[tex]K_f = \dfrac 12\times 4.00 \rm \ kg\times (2.50)^2(m/s)^2 +\dfrac 12 \times 6.00 \times (-0.50)^2(m/s)^2 =\bold {13.57 \rm \ J}[/tex]
Put the values in the formula,
[tex]\Delta K = 13.25\rm \ J - 26.75 \rm \ J[/tex]
[tex]\Delta K = -13.50\rm \ J[/tex]
Therefore, the decrease in the total kinetic energy of the given blocks after the collision is 13.50 J.
To know more about kinetic energy,
https://brainly.com/question/999862