pls help!
and a reason.
![pls help and a reason class=](https://us-static.z-dn.net/files/d27/9cd25e4a92d8e7353207563d8210f969.png)
Answer:
[tex]\angle BDA = 72^{\circ}[/tex]
[tex]\angle DAB = 36^{\circ}[/tex]
[tex]\angle BDC = 108^{\circ}[/tex]
[tex]\angle BCD = 36^{\circ}[/tex]
[tex]\angle DBC = 36^{\circ}[/tex]
Step-by-step explanation:
Given
[tex]\angle ABD = 72^{\circ}[/tex]
Required
Determine the missing angles
Since AB = AD, then:
[tex]\angle ABD = \angle BDA[/tex] --- Base angles of an isosceles triangle
Hence:
[tex]\angle ABD = \angle BDA = 72^{\circ}[/tex]
[tex]\angle ABD + \angle BDA + \angle DAB = 180^{\circ}[/tex] --- angles in a triangle
[tex]72^{\circ} + 72^{\circ} + \angle DAB = 180^{\circ}[/tex]
[tex]144^{\circ} + \angle DAB = 180^{\circ}[/tex]
Collect Like Terms
[tex]\angle DAB = 180^{\circ} - 144^{\circ}[/tex]
[tex]\angle DAB = 36^{\circ}[/tex]
[tex]\angle BDA + \angle BDC = 180^{\circ}[/tex] --- angle on a straight line
[tex]72^{\circ} + \angle BDC = 180^{\circ}[/tex]
[tex]\angle BDC = 180^{\circ} - 72^{\circ}[/tex]
[tex]\angle BDC = 108^{\circ}[/tex]
Since ABC is isosceles, then:
[tex]\angle DAB = \angle BCD = 36^{\circ}[/tex] --- base angle of isosceles
[tex]\angle BCD = 36^{\circ}[/tex]
Lastly:
[tex]\angle BCD + \angle BDC + \angle DBC = 180^{\circ}[/tex]
[tex]36^{\circ} + 108^{\circ} + \angle DBC = 180^{\circ}[/tex]
[tex]\angle DBC = 180^{\circ} - 36^{\circ} - 108^{\circ}[/tex]
[tex]\angle DBC = 36^{\circ}[/tex]
See attachment