Answer:
[tex] f_Y (y) =\frac{d}{dy} = 2 \frac{1}{2 |\sqrt{y}|} -1 = \frac{1}{|\sqrt{y}|} -1,0 \leq Y\leq 1[/tex]
Step-by-step explanation:
For this case we want to find the density function for [tex] Y=X^2[/tex]
And we have the following density function for the random variable X:
[tex] f(X) = 1- |X|,-1 \leq X \leq 1[/tex]
So we can do this replacing [tex]Y=X^2[/tex]
[tex] F_Y (Y \leq y) = P(X^2 \leq y) [/tex]
If we apply square root on both sides we got:
[tex] P(-\sqrt{y} \leq X \leq \sqrt{y}) = \int_{-\sqrt{y}}^0 1+t dt +\int_{0}^{\sqrt{y}} 1-t dt[/tex]
And if we integrate we got this:
[tex] F_Y (y) = [t+ \frac{t^2}{2}] \Big|_{-\sqrt{y}}^0+ [t -\frac{t^2}{2}] \Big|_{0}^{\sqrt{y}} [/tex]
And replacing we got:
[tex] F_Y (y) = [0 -(-\sqrt{y} +\frac{y}{2})] + [\sqrt{y} -\frac{y}{2}][/tex]
[tex] F_Y (y) = 2 |\sqrt{y}| -y[/tex]
And if we want to find the density function we just need to derivate the pdf like this:
[tex] f_Y (y) =\frac{d}{dy} = 2 \frac{1}{2 |\sqrt{y}|} -1 = \frac{1}{|\sqrt{y}|} -1,0 \leq Y\leq 1[/tex]