Answer:
The pooled variance is 8.
Step-by-step explanation:
We are given the following information:
Sample 1:
[tex]n_1 = 8\\s_1^2 = 6[/tex]
Sample 2:
[tex]n_2 = 8\\s_1^2 = 10[/tex]
Pooled Variance =
[tex]\displaystyle\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}[/tex]
Putting the values, we get,
[tex]\displaystyle\frac{(8-1)6 + (8-1)10}{8+8-2} = 8[/tex]
Thus, the pooled variance is 8.