Please please help!!
![Please please help class=](https://us-static.z-dn.net/files/db5/8ddb84c3983df57c94ade907317166dd.png)
Answer:
[tex]\large\boxed{x=0\ and\ x=\pi}[/tex]
Step-by-step explanation:
[tex]\tan^2x\sec^2x+2\sec^2x-\tan^2x=2\\\\\text{Use}\ \tan x=\dfrac{\sin x}{\cos x},\ \sec x=\dfrac{1}{\cos x}:\\\\\left(\dfrac{\sin x}{\cos x}\right)^2\left(\dfrac{1}{\cos x}\right)^2+2\left(\dfrac{1}{\cos x}\right)^2-\left(\dfrac{\sin x}{\cos x}\right)^2=2\\\\\left(\dfrac{\sin^2x}{\cos^2x}\right)\left(\dfrac{1}{\cos^2x}\right)+\dfrac{2}{\cos^2x}-\dfrac{\sin^2x}{\cos^2x}=2[/tex]
[tex]\dfrac{\sin^2x}{(\cos^2x)^2}+\dfrac{2-\sin^2x}{\cos^2x}=2\\\\\text{Use}\ \sin^2x+\cos^2x=1\to\sin^2x=1-\cos^2x\\\\\dfrac{1-\cos^2x}{(\cos^2x)^2}+\dfrac{2-(1-\cos^2x)}{\cos^2x}=2\\\\\dfrac{1-\cos^2x}{(\cos^2x)^2}+\dfrac{2-1+\cos^2x}{\cos^2x}=2\\\\\dfrac{1-\cos^2x}{(\cos^2x)^2}+\dfrac{1+\cos^2x}{\cos^2x}=2[/tex]
[tex]\dfrac{1-\cos^2x}{(\cos^2x)^2}+\dfrac{(1+\cos^2x)(\cos^2x)}{(\cos^2x)^2}=2\qquad\text{Use the distributive property}\\\\\dfrac{1-\cos^2x+\cos^2x+\cos^4x}{\cos^4x}=2\\\\\dfrac{1+\cos^4x}{\cos^4x}=2\qquad\text{multiply both sides by}\ \cos^4x\neq0\\\\1+\cos^4x=2\cos^4x\qquad\text{subtract}\ \cos^4x\ \text{from both sides}\\\\1=\cos^4x\iff \cos x=\pm\sqrt1\to\cos x=\pm1\\\\ x=k\pi\ for\ k\in\mathbb{Z}\\\\\text{On the interval}\ 0\leq x<2\pi,\ \text{the solutions are}\ x=0\ \text{and}\ x=\pi.[/tex]