The answer is:
The range or output for the given domain is:
(84,24,4,15.25,84)
To find the range (output) for the given domain (inputs) we need to evaluate the given function with the given inputs or "x" values.
So, evaluating, we have:
- Range with "x" equal to -4:
[tex]f(x)=5x^{2} +4\\\\f(-4)=5*(-4)^{2} +4=5*16+4=84[/tex]
- Range with "x" equal to -2:
[tex]f(x)=5x^{2} +4\\\\f(-2)=5*(-2)^{2} +4=4*5+4=24[/tex]
- Range with "x" equal to 0:
[tex]f(x)=5x^{2} +4\\\\f(-2)=5*(0)^{2} +4=0+4=4[/tex]
- Range with "x" equal to 1.5:
[tex]f(x)=5x^{2} +4\\\\f(-2)=5*(1.5)^{2} +4=11.25+4=15.25[/tex]
- Range with "x" equal to 4:
[tex]f(x)=5x^{2} +4\\\\f(-2)=5*(4)^{2} +4=80+4=84[/tex]
Hence, the range or output for the given domain is:
(84,24,4,15.25,84)
Have a nice day!