Answer:
(a) The dc value is 95.5 volts
(b) The rms value is 106.1 volts
(c) The period is 0.01s
Explanation:
Given
[tex]V(t) = 150\sin(wt)[/tex]
[tex]f = 100Hz[/tex]
Solving (a): The dc value
[tex]V(t) = 150\sin(wt)[/tex] implies that
[tex]V_{max} = 150[/tex]
So, the dc value is:
[tex]V = \frac{2}{\pi} * V_{max}[/tex]
[tex]V = \frac{2}{\pi} * 150[/tex]
[tex]V = \frac{300}{\pi}[/tex]
[tex]V = 95.5V[/tex]
Solving (b): The RMS value
This is calculated as:
[tex]V_{rms} = \frac{1}{\sqrt 2} * V_{max}[/tex]
So, we have:
[tex]V_{rms} = \frac{1}{\sqrt 2} * 150[/tex]
[tex]V_{rms} = \frac{150}{\sqrt 2}[/tex]
[tex]V_{rms} = 106.1V\\[/tex]
Solving (c): The period
This is calculated as:
[tex]T = \frac{1}{f}[/tex]
So, we have:
[tex]T = \frac{1}{100Hz}[/tex]
[tex]T = 0.01s[/tex]