Answer:
[tex]z_m=-\frac{1}{2}-\frac{1}{2}i[/tex]
Step-by-step explanation:
The given complex numbers are;
[tex]z_1=-8+3i[/tex]
and
[tex]z_2=7-4i[/tex].
The midpoint of any two complex numbers,
[tex]z_1=a_1+a_1i[/tex] and [tex]z_2=a_2+a_2i[/tex] is
is given by,
[tex]z_m=\frac{a_1+a_2}{2}+\frac{a_1+a_2}{2}i[/tex].
The midpoint of the complex numbers can be found by adding the corresponding real parts and imaginary parts and then dividing each by 2.
This is the same as;
[tex]z_m=\frac{z_1+z_2}{2}[/tex]
[tex]\Rightarrow z_m=\frac{-8+3i+7-4i}{2}[/tex]
[tex]\Rightarrow z_m=\frac{-8+7+3i-4i}{2}[/tex]
[tex]\Rightarrow z_m=\frac{-1-i}{2}[/tex]
[tex]\Rightarrow z_m=-\frac{1}{2}-\frac{i}{2}[/tex]
or
[tex]\Rightarrow z_m=-\frac{1}{2}-\frac{1}{2}i[/tex]