Respuesta :
Answer:
$925.097.
Step-by-step explanation:
We will use EMI formula to answer our problem.
[tex]E=P\cdot r\cdot \frac{(1+r)^{n}}{((1+r)^{n}-1)}[/tex], where,
E is EMI.
P= Principal loan amount.
r= the rate of interest calculated on monthly basis.
We need to figure out our principal loan amount before using this formula. We are told that we have to pay 20% of $250,000 as down payment, therefore our principal loan amount will be 80% of $250,000.
[tex]\text{Principal loan amount}=\frac{80}{100} \times 250,000[/tex]
[tex]\text{Principal loan amount}=0.80 \times 250,000=200000[/tex]
[tex]r=\frac{0.0374}{12} =0.0031166666666667[/tex]
Now let us use EMI formula to find our mortgage payment.
[tex]E=200,000\cdot 0.0031166666666667\cdot \frac{(1+0.0031166666666667)^{(30*12)}}{((1+0.0031166666666667)^{(30*12)}-1)}[/tex]
[tex]E=623.33333333334\cdot \frac{(1.0031166666666667)^{(360)}}{((1.0031166666666667)^{(360)}-1)}[/tex]
[tex]E=623.33333333334\cdot \frac{3.0656363754770338961}{3.0656363754770338961-1)}[/tex]
[tex]E=623.33333333334\cdot \frac{3.0656363754770338961}{2.0656363754770338961}[/tex]
[tex]E=623.33333333334\cdot 1.4841123112818256882213[/tex]
[tex]E=925.0966740323479\approx 925.097[/tex]
Therefore, the mortgage payment to cover remaining balance in 30 years will be $925.097 per month.