Answer:
5.08m
Explanation:
Charge on an electron=[tex]-1.6\times 10^{-19}C[/tex]
Number of electrons=2
Mass of electron=[tex]9.1\times 10^{-31}kg[/tex]
Weight of electron=mg
Where g=Acceleration due to gravity=9.8[tex]m/s^2[/tex]
Using the formula
Weight of an electron=[tex]9.1\times 10^{-31}\times 9.8[/tex]N
Force between two electrons =Weight of an electron
We know that
Electrostatic force =[tex]k\frac{q_1q_2}{r^2}[/tex]
Where [tex]q_1,q_2=[/tex]Charge
r=Distance between two charges
[tex]k=9\times 10^9 Nm^2/C^2[/tex]
Using the formula
[tex]9.1\times 10^{-31}\times 9.8=\frac{9\times 10^9(1.6\times 10^{-19})^2}{r^2}[/tex]
[tex]r^2=\frac{9\times 10^9\times 2.56\times 10^{-38}}{9.1\times 10^{-31}\times 9.8}=25.8[/tex]
[tex]r=\sqrt{25.8}=5.08m[/tex]
Hence, the distance between two electrons=5.08m