Respuesta :
1. UA 78 units 2. AQ 14.3 units 3.IE 7.5 units 4. PI 8.7 units 5.EP 8.2 units 6. d=11.0 units
Step-by-step explanation:
1. Here apply the formula for distance between two points in a segment as;
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
where x,y are coordinates values.
For UA where U(6,-4) and A(11,2) then the distance UA is calculated as;
[tex]d=\sqrt{(11-6)^2+(2--4)^2} \\\\d=\sqrt{5^2+6^2} =\sqrt{25+36} =\sqrt{61} =7.8units[/tex]
2.
Finding AQ where A(11,2) and Q(-2,-4), then apply the same formula for distance as;
[tex]d=\sqrt{(-2-11)^2+(-4-2)^2} \\\\\\d=\sqrt{-13^2+-6^2} \\\\d=\sqrt{169+36} =\sqrt{205} =14.3[/tex]
3.
Given the triangle with vertices , the length of the sides can be found by applying the distance formula as;
IE where I(6, -1/2) ,E(0,4) then,
[tex]d=\sqrt{0-6)^2+(4--1/2)^2}\\ \\d=\sqrt{-6^2+4.5^2} \\\\d=\sqrt{36+20.25} =\sqrt{56.25} =7.5units[/tex]
PI where P(-2,-4) and I(6,-1/2) then,
[tex]d=\sqrt{(6--2)^2+(-1/2--4)^2} \\\\\\d=\sqrt{8^2+3.5^2} =\sqrt{64+12.25} =\sqrt{76.25} =8.7units[/tex]
4.
EP where E(0,4) and P(-2,-4)
[tex]d=\sqrt{(-2-0)^2+(-4-4)^2} \\\\\\d=\sqrt{-2^2+-8^2} =\sqrt{4+64} =\sqrt{68} =8.2units[/tex]
5.
The circle has a center at D(0,-6) and passes through point C(5,-1).To get the radius of the circle, you find the distance DC
Radius DC , where D(0,-6) ,C(5,-1)
[tex]d=\sqrt{(-1-0)^2+(5--6)^2} \\\\d=\sqrt{-1^2+11^2} =\sqrt{1+121} =\sqrt{122} =11.0[/tex]
Learn More
Finding length of a segment given coordinates of end-point:https://brainly.com/question/285950
Keywords : Pythagorean ,lengths, parallelogram,coordinates,diagonal,triangle
#LearnwithBrainly
Answer:
1. UA 78 units
2. AQ 14.3 units
3.IE 7.5 units
4. PI 8.7 units
5.EP 8.2 units
6. d=11.0 units
Step-by-step explanation:
I hope this helps! :)