Respuesta :

Answer:

Average rate of change of function is -2.

Step-by-step explanation:

Given [tex]f(x)=\frac{-1}{4}(x+4)^2-8[/tex].

we have to find the average rate of change for the quadratic function from x=−2 to x = 2.

[tex]f(-2)=\frac{-1}{4}(-2+4)^2-8=\frac{-1}{4}(4)-8=-9[/tex]

[tex]f(2)=\frac{-1}{4}(2+4)^2-8=\frac{-1}{4}(36)-8=-17[/tex]

The average rate of change of the function  f(x) on interval [-2,2] is

[tex]\frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(-2)}{2-(-2)}=\frac{-17-(-9)}{4}=\frac{-8}{4}=-2[/tex]

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

If you didnt get that, It's -2.