Respuesta :
Answer:
Average rate of change of function is -2.
Step-by-step explanation:
Given [tex]f(x)=\frac{-1}{4}(x+4)^2-8[/tex].
we have to find the average rate of change for the quadratic function from x=−2 to x = 2.
[tex]f(-2)=\frac{-1}{4}(-2+4)^2-8=\frac{-1}{4}(4)-8=-9[/tex]
[tex]f(2)=\frac{-1}{4}(2+4)^2-8=\frac{-1}{4}(36)-8=-17[/tex]
The average rate of change of the function f(x) on interval [-2,2] is
[tex]\frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(-2)}{2-(-2)}=\frac{-17-(-9)}{4}=\frac{-8}{4}=-2[/tex]
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
If you didnt get that, It's -2.