Respuesta :

iGreen
1.

Use the formula for the surface area of a sphere:

[tex]\sf A=4\pi r^2[/tex]

Plug in what we know:

[tex]\sf A=4\pi (7)^2[/tex]

Simplify the exponent:

[tex]\sf A=4\pi (49)[/tex]

Multiply:

[tex]\sf A=196\pi~cm^2[/tex]

This is an exact answer, if you want an approximate answer you can input 3.14 for pi:

[tex]\sf A\approx 196(3.14)\approx 615.44~cm^2[/tex]

2.

Use the formula for the volume of a sphere:

[tex]\sf V=\dfrac{4}{3}\pi r^3[/tex]

Plug in what we know:

[tex]\sf V=\dfrac{4}{3}\pi (11)^3[/tex]

Simplify the exponent:

[tex]\sf V=\dfrac{4}{3}\pi (1331)[/tex]

Multiply:

[tex]\sf V=\dfrac{5324}{3}\pi~ft^3[/tex] 

This is an exact answer, if you want an approximate answer you can plug in 3.14 for pi:

[tex]\sf V\approx\dfrac{5324}{3}(3.14)\approx 5572.45~ft^3[/tex]

3.

Since the two figures are similar, the ratio of their sides must be equal. So we can set up a proportion:

[tex]\sf\dfrac{9}{6}=\dfrac{13.5}{x}[/tex]

Cross multiply:

[tex]\sf (6)(13.5)=(9)(x)[/tex]

[tex]\sf 81=9x[/tex]

Divide 9 to both sides:

[tex]\sf x=\boxed{\sf 9~mm}[/tex]
ACCESS MORE