1.
Use the formula for the surface area of a sphere:
[tex]\sf A=4\pi r^2[/tex]
Plug in what we know:
[tex]\sf A=4\pi (7)^2[/tex]
Simplify the exponent:
[tex]\sf A=4\pi (49)[/tex]
Multiply:
[tex]\sf A=196\pi~cm^2[/tex]
This is an exact answer, if you want an approximate answer you can input 3.14 for pi:
[tex]\sf A\approx 196(3.14)\approx 615.44~cm^2[/tex]
2.
Use the formula for the volume of a sphere:
[tex]\sf V=\dfrac{4}{3}\pi r^3[/tex]
Plug in what we know:
[tex]\sf V=\dfrac{4}{3}\pi (11)^3[/tex]
Simplify the exponent:
[tex]\sf V=\dfrac{4}{3}\pi (1331)[/tex]
Multiply:
[tex]\sf V=\dfrac{5324}{3}\pi~ft^3[/tex]
This is an exact answer, if you want an approximate answer you can plug in 3.14 for pi:
[tex]\sf V\approx\dfrac{5324}{3}(3.14)\approx 5572.45~ft^3[/tex]
3.
Since the two figures are similar, the ratio of their sides must be equal. So we can set up a proportion:
[tex]\sf\dfrac{9}{6}=\dfrac{13.5}{x}[/tex]
Cross multiply:
[tex]\sf (6)(13.5)=(9)(x)[/tex]
[tex]\sf 81=9x[/tex]
Divide 9 to both sides:
[tex]\sf x=\boxed{\sf 9~mm}[/tex]