Respuesta :
Energy conservation law states:
[tex] E_{total} = E_{potential} + E_{kinetic} [/tex]
At the top potential energy is at maximum and kinetic energy is zero. At the bottom potential energy is zero and kinetic energ is at maximum.
We have:
[tex]E_{total-top} = E_{total-bottom} \\ E_{potential-top} + E_{kinetic-top} =E_{potential-bottom} + E_{kinetic-bottom} \\ E_{potential-top} =E_{kinetic-bottom} \\ m*g*h = \frac{1}{2} *m* v^{2} \\ g*h = \frac{1}{2} * v^{2} [/tex]
We can use this formula to calculate height:
[tex]h= \frac{\frac{1}{2} * v^{2} }{g} \\ h= \frac{\frac{1}{2} * 4.64^{2} }{9.81} \\ h=1.09m[/tex]
To calculate requested speed we just need to double the height and insert it into equation:
[tex]v= \sqrt{2*g*2*h} \\ v=\sqrt{2*9.81*2*1.09} \\ v=6.54 m/s[/tex]
[tex] E_{total} = E_{potential} + E_{kinetic} [/tex]
At the top potential energy is at maximum and kinetic energy is zero. At the bottom potential energy is zero and kinetic energ is at maximum.
We have:
[tex]E_{total-top} = E_{total-bottom} \\ E_{potential-top} + E_{kinetic-top} =E_{potential-bottom} + E_{kinetic-bottom} \\ E_{potential-top} =E_{kinetic-bottom} \\ m*g*h = \frac{1}{2} *m* v^{2} \\ g*h = \frac{1}{2} * v^{2} [/tex]
We can use this formula to calculate height:
[tex]h= \frac{\frac{1}{2} * v^{2} }{g} \\ h= \frac{\frac{1}{2} * 4.64^{2} }{9.81} \\ h=1.09m[/tex]
To calculate requested speed we just need to double the height and insert it into equation:
[tex]v= \sqrt{2*g*2*h} \\ v=\sqrt{2*9.81*2*1.09} \\ v=6.54 m/s[/tex]
Answer:
The Final speed would be 6.5 m/s, if the slide is of twice the initial height.
Explanation:
Given Information
Initial speed [tex]u=0[/tex]
Final speed [tex]v= 4.64 \mathrm{ m/s}[/tex]
Ignoring the friction and resistance from air and water lubricating the slide.
Consider the conversion of energy.
Loss in potential energy = Gain in kinetic energy
[tex]mgh_{1} -0=\frac{1}{2} mv^{2} -0\\mgh_{1} =\frac{1}{2} mv^{2} \\h_{1}=\frac{v^2}{2g}\\[/tex]
Substituting the value.
[tex]h_{1}=\frac{(4.64)^2}{2\times9.81}\\& = 1.09 \, \mathrm{ m}[/tex]
If the height is doubled [tex]h_{2} =2h_{1} =2\times 1.09\, \mathrm { m} = 2.18\, \mathrm { m}[/tex]
From the above relation.
[tex]h_{2}=\frac{v_{2}}{2g}\\v_{2}=\sqrt{2gh_{2}[/tex]
Substituting the value.
[tex]v_2=\sqrt{2\times9.81\times2.18} \\=6.54 \mathrm {m/s}[/tex]
Therefore, the final speed would be [tex]6.54 \mathrm {m/s}[/tex].
Fore more details, refer the link:
https://brainly.com/question/17858145?referrer=searchResults