Respuesta :
[tex]A=lw+0.5bh \ \ \ \ \ \ \ \ \ \ |-lw \\
A-lw=0.5bh \ \ \ \ \ \ \ \ \ \ |\div 0.5h \\
\boxed{b=\frac{A-lw}{0.5h}}[/tex]
The answer is B.
The answer is B.
Let
l------> the length side of the rectangle
w----> the width side of a rectangle
b----> the base of the triangle
h----> the height of the triangle
we know that
the area of the yard is equal to
[tex]A=lw+0.5bh[/tex]
Solve for b------> ( that means clear variable b)
Subtract [tex]lw[/tex] both sides
[tex]A-lw=lw+0.5bh-lw[/tex]
[tex]A-lw=0.5bh[/tex]
Divide by [tex]0.5h[/tex] both sides
[tex](A-lw)/(0.5h)=0.5bh/(0.5h)[/tex]
[tex]b=(A-lw)/(0.5h)[/tex]
therefore
the answer is the option B
The quantity A minus l times w all divided by 0.5 times h