Respuesta :

Answer:  The simplified expression is:  " 5x² + x – 7 " . 
_____________________________________________
Note:
_____________________________________________
We are given:
_____________________________________________

          →   " (7x² + 4x – 6) – (2x² – 3x + 1) "  ; 
____________________________________
Let us simplify this expression:
____________________________________
Rewrite as:
____________________________________

  (7x² + 4x – 6) – 1(2x² – 3x + 1) ; 

{Since there is an implied "one", since "1" ; multiplied by any value, results in the same value} ; 
___________________________________________
Let us start with the following part of the expression:
___________________________________________
        →        "  – 1(2x² – 3x + 1) "  ;
___________________________________________
Note the "distributive property" of multiplication:
____________________________________________
 a(b + c)  = ab + ac ;

 a(b – c) = ab – ac ;
____________________________________________

As such:  " a(b – c + d) = ab – ac + ad "  ; 
____________________________________________
So:
______________________________________________________
 →   " – 1(2x² – 3x + 1) " =  (-1 * 2x²)  – (-1* -3x)  + (-1 * 1) ; 

                                                   =  -2x²  – 3x + (-1) ; 

                                                  =   -2x²  –  3x  –  1 ;
______________________________________________________
Now, bring down the: " 7x² + 4x – 6 " ;  and add the " – 2x² –  3x  –  1 " ; 

as follows:
___________________________________________
           "  7x² + 4x – 6 – 2x² –  3x  –  1  "  ;
___________________________________________
         →  Combine the "like terms" :

               + 7x² – 2x²  = + 5x²  ;

               + 4x  –  3x  =  + 1x =  + x ; 

               – 6   –  1   =   – 7 ; 
____________________________________________
And we can rewrite the simplified expression as:
____________________________________________
           "  5x² + x – 7 " . 
____________________________________________
ACCESS MORE