A point P (x, y) is shown on the unit circle U corresponding to a real number t. Find the values of the trigonometric functions at t.
![A point P x y is shown on the unit circle U corresponding to a real number t Find the values of the trigonometric functions at t class=](https://us-static.z-dn.net/files/da2/bc9a6ef51b108226ffcda085f07cb8f1.png)
Point P is on the unit circle U. The values of trigonometric functions at t are [tex]sin\theta=\dfrac{8}{17},\;cos\theta=-\dfrac{15}{17}[/tex][tex],tan\theta=-\dfrac{8}{15},\;cot \theta=-\dfrac{15}{8},\;cosec\theta=\dfrac{17}{8},\;sec\theta=-\dfrac{17}{15}[/tex].
Given:
From the given figure, the coordinate of point P is [tex](-\dfrac{15}{17}, \dfrac{8}{17})[/tex].
The point P is present on a unit circle U. So, in general, the coordinates of a point on the circle will be [tex](x,y)\equiv (cos\theta, sin\theta)[/tex].
By comparing the given coordinate with the general expression, the value sine and cosine function will be,
[tex]sin\theta=\dfrac{8}{17}\\cos\theta=-\dfrac{15}{17}[/tex]
Now, the other trigonometric functions will be,
[tex]tan\theta=\dfrac{sin\theta}{cos\theta}\\tan\theta=-\dfrac{8}{15}\\cot \theta=-\dfrac{15}{8}\\cosec\theta=1/sin\theta=\dfrac{17}{8}\\sec\theta=1/cos\theta=-\dfrac{17}{15}[/tex]
Therefore, the values of trigonometric functions at t are [tex]sin\theta=\dfrac{8}{17},\;cos\theta=-\dfrac{15}{17}[/tex][tex],tan\theta=-\dfrac{8}{15},\;cot \theta=-\dfrac{15}{8},\;cosec\theta=\dfrac{17}{8},\;sec\theta=-\dfrac{17}{15}[/tex].
For more details, refer to the link:
https://brainly.com/question/25090596