Respuesta :
The solutions to the equation are: [tex] h= -8 [/tex] and [tex] h=4 [/tex]
Explanation
[tex] 2h^2 +8h= 64 [/tex]
First we will divide all terms in both sides by 2. So,
[tex] \frac{2h^2}{2} + \frac{8h}{2}= \frac{64}{2} \\ \\ h^2 + 4h = 32 [/tex]
Then we will subtract 32 from both sides and then factor out the whole left side. So,
[tex] h^2 +4h -32 = 32- 32\\ \\ h^2 +4h -32 =0 \\ \\ h^2 +8h -4h -32 =0 \\ \\ h(h+8)-4(h+8)=0 \\ \\ (h+8)(h-4)= 0 [/tex]
Now we will apply the Zero product property. So,
[tex] h+8 =0 \\ \\h= -8 \\ \\ or, h-4=0\\ \\ h= 4 [/tex]
So, the solutions are: [tex] h= -8 [/tex] and [tex] h=4 [/tex]
Otras preguntas
