What is the area, rounded to the nearest tenth of square inch, of an equilateral triangle that has a perimeter of 24 inches?

Respuesta :

Answer: 27.7 square inches.

Step-by-step explanation:

Let 'a' be the side of equilateral triangle.

Then the perimeter of the triangle = a+a+a=3a

Given: Perimeter of the equilateral triangle = 24 inches

[tex]\\\Rightarrow3a=24\\\\\Rightarrow\ a=8\ inches[/tex]

We know that the area of a equilateral triangle is given by :-

[tex]A=\dfrac{\sqrt{3} a^2}{4}\\\\\Rightarrow\ A=\dfrac{\sqrt{3} (8)^2}{4}\\\\\Rightarrow\ A=27.71281292\approx27.7\ in.^2[/tex]

Answer:

[tex]27.712 inches^2[/tex]

Step-by-step explanation:

Perimeter of equilateral triangle = [tex]3 \times side[/tex]

We are given that an equilateral triangle that has a perimeter of 24 inches

So,  [tex]3 \times side=24[/tex]

[tex]Side=\frac{24}{3}[/tex]

[tex]Side=8[/tex]

Area of equilateral triangle = [tex]\frac{\sqrt{3}}{4}a^2[/tex]

a is the side

So, Area of equilateral triangle = [tex]\frac{\sqrt{3}}{4}(8)^2[/tex]

So, Area of equilateral triangle = [tex]27.712 inches^2[/tex]

Hence the area of equilateral triangle is [tex]27.712 inches^2[/tex]

ACCESS MORE