Respuesta :
Answer: 27.7 square inches.
Step-by-step explanation:
Let 'a' be the side of equilateral triangle.
Then the perimeter of the triangle = a+a+a=3a
Given: Perimeter of the equilateral triangle = 24 inches
[tex]\\\Rightarrow3a=24\\\\\Rightarrow\ a=8\ inches[/tex]
We know that the area of a equilateral triangle is given by :-
[tex]A=\dfrac{\sqrt{3} a^2}{4}\\\\\Rightarrow\ A=\dfrac{\sqrt{3} (8)^2}{4}\\\\\Rightarrow\ A=27.71281292\approx27.7\ in.^2[/tex]
Answer:
[tex]27.712 inches^2[/tex]
Step-by-step explanation:
Perimeter of equilateral triangle = [tex]3 \times side[/tex]
We are given that an equilateral triangle that has a perimeter of 24 inches
So, [tex]3 \times side=24[/tex]
[tex]Side=\frac{24}{3}[/tex]
[tex]Side=8[/tex]
Area of equilateral triangle = [tex]\frac{\sqrt{3}}{4}a^2[/tex]
a is the side
So, Area of equilateral triangle = [tex]\frac{\sqrt{3}}{4}(8)^2[/tex]
So, Area of equilateral triangle = [tex]27.712 inches^2[/tex]
Hence the area of equilateral triangle is [tex]27.712 inches^2[/tex]