Explanation:
It is given that,
Length of the blades, L = 30 m
Maximum rotation of the blades, [tex]\omega=20\ rev/min=2.09\ rad/s[/tex]
(a) Mass of the blades, m = 6000 kg
Let L is the angular momentum of the turbine at this rotation rate. Its formula is given by :
[tex]L=I\omega[/tex]
I is the moment of inertia of the rod, [tex]I=\dfrac{ml^2}{3}[/tex]
[tex]L=\dfrac{ml^2}{3}\omega[/tex]
For three blades,
[tex]L=3\dfrac{ml^2}{3}\omega[/tex]
[tex]L=ml^2\omega[/tex]
[tex]L=6000\times 30^2\times 2.09[/tex]
[tex]L=1.12\times 10^7\ kg-m^2/s[/tex]
(b) Let [tex]\tau[/tex]is the torque require to rotate the blades up to the maximum rotation rate in 5 minutes or 300 seconds.
[tex]\tau=I\times \alpha[/tex]
For three blades,
[tex]\tau=3\dfrac{ml^2}{3}\times \alpha[/tex]
[tex]\tau=ml^2\times \dfrac{\omega}{t}[/tex]
[tex]\tau=6000\times 30^2\times \dfrac{2.09}{300}[/tex]
[tex]\tau=37620\ N-m[/tex]
Hence, this is the required solution.