Match wash hypotenuse length with the leg lengths that will create a right triangle
![Match wash hypotenuse length with the leg lengths that will create a right triangle class=](https://us-static.z-dn.net/files/dc4/76ac4224c11524962c25fdc29fc35f62.png)
Answer:
Step-by-step explanation:
Using the Pythagoras theorem, we have
[tex](Hyp)^2=(Leg)^2+(Leg)^2[/tex]
(A) The given value of hypotenuse is:
[tex]\sqrt{6} units[/tex]
Now, using the Pythagoras theorem,
[tex]\sqrt{6}=\sqrt{(\sqrt{5})^2 +(1)^2}[/tex]
Thus, one leg is [tex]\sqrt{5} units[/tex] and the other is [tex]1 units[/tex].
(B)The given value of hypotenuse is:
[tex]\sqrt{5} units[/tex]
Now, using the Pythagoras theorem,
[tex]\sqrt{5}=\sqrt{(\sqrt{2})^2 +(\sqrt{3})^2}[/tex]
Thus, one leg is [tex]\sqrt{2} units[/tex] and the other is [tex]\sqrt{3} units[/tex].
(C) The given value of hypotenuse is:
[tex]\sqrt{8} units[/tex]
Now, using the Pythagoras theorem,
[tex]\sqrt{8}=\sqrt{(\sqrt{5})^2 +(\sqrt{3})^2}[/tex]
Thus, one leg is [tex]\sqrt{5} units[/tex] and the other is [tex]\sqrt{3} units[/tex].
(D) The given value of hypotenuse is:
[tex]\sqrt{3} units[/tex]
Now, using the Pythagoras theorem,
[tex]\sqrt{3}=\sqrt{(\sqrt{2})^2 +(1)^2}[/tex]
Thus, one leg is [tex]\sqrt{2} units[/tex] and the other is [tex]1 units[/tex].