Answer:
The equation that has a vertex in (0, -5) is the first one.
Step-by-step explanation:
A standard form second degree equation is given by the following expression:
[tex]y(x) = a*x^2 + b*x + c[/tex]
For which the vertex coordinates can be calculated by:
[tex]x_{vertex} = -\frac{b}{2*a}[/tex]
While "y" for the vertex can be found by applying this coordinate on the expression. Using this knowledge in each equation gives us:
1. [tex]y(x) = x^2 - 5[/tex]
[tex]a = 1\\b = 0\\c = -5[/tex]
Therefore the vertex coordinate is:
[tex]x_{vertex} = -\frac{b}{2*a} = -\frac{0}{2*1} = 0[/tex]
[tex]y_{vertex} = 0^2 - 5 = -5[/tex]
This parabola has a vertex in (0,-5).
2. [tex]y(x) = x^2 + 5[/tex]
[tex]a = 1\\b = 0\\c = 5[/tex]
Therefore the vertex coordinate is:
[tex]x_{vertex} = -\frac{b}{2*a} = -\frac{0}{2*1} = 0[/tex]
[tex]y_{vertex} = 0^2 + 5 = 5[/tex]
This parabola has a vertex in (0,5).
3. [tex]y(x) =(x+ 5)^2 = x^2 + 10*x + 25[/tex]
[tex]a = 1\\b = 10\\c = 25[/tex]
Therefore the vertex coordinate is:
[tex]x_{vertex} = -\frac{b}{2*a} = -\frac{10}{2*1} = -5[/tex]
[tex]y_{vertex} = (-5)^2 + 10*(-5) + 25 = 0[/tex]
This parabola has a vertex in (-5,0).
4. [tex]y(x) =(x- 5)^2 = x^2 - 10*x + 25[/tex]
[tex]a = 1\\b =- 10\\c = 25[/tex]
Therefore the vertex coordinate is:
[tex]x_{vertex} = -\frac{b}{2*a} = -\frac{-10}{2*1} = 5[/tex]
[tex]y_{vertex} = (5)^2 - 10*(5) + 25 = 0[/tex]
This parabola has a vertex in (5,0).