The slope-point form:
[tex]y=mx+b[/tex]
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points (-4, 1) and (4, 4). Substitute:
[tex]m=d\frac{4-1}{4-(-4)}=\dfrac{3}{8}[/tex]
Therefore we have the equation of a line
[tex]y=\dfrac{3}{8}x+b[/tex]
Put the coordinates of the point (4, 4) to the euation of a line:
[tex]4=\dfrac{3}{8}(4)+b[/tex]
[tex]4=\dfrac{3}{2}+b[/tex]
[tex]4=1.5+b[/tex] subtract 1.5 from both sides
[tex]2.5=b\to b=2.5\to b=\dfrac{5}{2}[/tex]
Answer: [tex]\boxed{y=\dfrac{3}{8}x+\dfrac{5}{2}}[/tex]