Respuesta :
Use the General Gas Law
PV = nRT => n = PV/ RT
P= 10130.0 kPa
V= 50 L
R= R = 8.314 L∙kPa/K∙mol
T= 300°C + 273 = 573 K
n = 10130.0 kPa 50 L / 8.314 L∙kPa/K∙mol 573 K
n = 106.32 mol
PV = nRT => n = PV/ RT
P= 10130.0 kPa
V= 50 L
R= R = 8.314 L∙kPa/K∙mol
T= 300°C + 273 = 573 K
n = 10130.0 kPa 50 L / 8.314 L∙kPa/K∙mol 573 K
n = 106.32 mol
Answer: The moles of argon gas contained in the cylinder is 106.32 mol.
Explanation:
To calculate the number of moles of gas, we use the equation given by Ideal gas, which is:
[tex]PV=nRT[/tex]
where,
P = pressure of the gas = 10130 kPa
V = Volume of the gas = 50 L
n = Number of moles of gas = ? moles
R = Gas constant = [tex]8.314\text{ L kPa }K^{-1}mol^{-1}[/tex]
T = Temperature of the gas = 300° C = 573 K (Conversion factor: [tex]T(K)=T(^oC)+273[/tex]
Putting values in above equation, we get:
[tex]10130\times 50=n\times 8.314\times 573\\\\n=106.32mol[/tex]
Hence, the moles of argon gas contained in the cylinder is 106.32 mol.