A line passes through the points (2, –2) and (–6, 2). The point (a, –4) is also on the line. What is the value of a?

Answer:
The value of a=6[/tex]
Step-by-step explanation:
step 1:-
col linearity of three points :-
We know that slopes of two parallel lines are equal.If two lines having the same slope pass through a common point ,then two lines will coincide . Hence ,If A,B,C are three points in the X Y- plane, then they will lie on a line,
that is three points are col linear if and only if Slope of AB= slope of BC
step 2:-
Since the given three points are col-linear, we have
Slope of AB= slope of BC
given points are A(2,-2) ,B(-6,2) and C(a,-4)
Step 3 :-
Slope of AB= slope of BC
[tex]\frac{2-(-2)}{-6-2} =\frac{-4-2}{a+6}[/tex]
[tex]\frac{-1}{2} =\frac{-6}{a+6}
by cross multiplication
we get \\a+6=12\\
Step 4:-
The value of a=6[/tex]