Respuesta :

Answer:  The zeroes of the given polynomial f(x) are

[tex]x=1-\sqrt{\dfrac{23}{8}},~~~x=1+\sqrt{\dfrac{23}{8}}.[/tex]

Step-by-step explanation:  We are given to find the zeroes of the quadratic function below:

[tex]f(x)=8x^2-16x-15.[/tex]

To find the zeroes, we must find the roots of the following equation

[tex]f(x)=0\\\\\Rightarrow 8x^2-16x-15=0~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex].

We know that the roots of the quadratic equation of the form [tex]ax^2+bx+c=0,~a\neq 0[/tex] is given by

[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}.[/tex]

In the given quadratic equation , a = 8, b = -16  and  c = - 15.

Therefore, the roots of the equation are

[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\\\\Rightarrow x=\dfrac{-(-16)\pm\sqrt{(-16)^2-4\times 8\times (-15)}}{2\times 8}\\\\\\\Rightarrow x=\dfrac{16\pm\sqrt{256+480}}{16}\\\\\\\Rightarrow x=\dfrac{16\pm\sqrt{786}}{16}\\\\\\\Rightarrow x=\dfrac{16\pm4\sqrt{46}}{16}\\\\\\\Rightarrow x=\dfrac{4\pm\sqrt{46}}{4}\\\\\\\Rightarrow x=1\pm\sqrt{\dfrac{46}{16}}\\\\\\\Rightarrow x=1\pm\sqrt{\dfrac{23}{8}}\\\\\\\Rightarrow x=1-\sqrt{\dfrac{23}{8}},~~~x=1+\sqrt{\dfrac{23}{8}}.[/tex]

Thus, the zeroes of the given polynomial f(x) are

[tex]x=1-\sqrt{\dfrac{23}{8}},~~~x=1+\sqrt{\dfrac{23}{8}}.[/tex]

Option (C) is correct.

The zeroes of the given polynomial f(x) = 8x^2-16x-15 are x = 1 + [tex]\sqrt{23}[/tex] / 8 and x = 1 -[tex]\sqrt{23}[/tex] / 8 Thus, Option C is correct.

What is a quadratic equation?

A quadratic equation is the second-order degree algebraic expression in a variable. the standard form of this expression is  ax² + bx + c = 0 where a. b are coefficients and x is the variable and c is a constant.

We are given to find the zeroes of the quadratic function f(x) = 8x^2 - 16x-15

f(x) = [tex]8x^2-16x-15[/tex] = 0

We know that the roots of the quadratic equation ax² + bx + c = 0 is

x = -b ± [tex]\sqrt{b^2 - 4ac}[/tex] / 2a

In the given quadratic equation , a = 8, b = -16  and  c = - 15.

So,

x = -b ± [tex]\sqrt{b^2 - 4ac}[/tex] / 2a

x = -(-16) ± [tex]\sqrt{(-16)^2 - 4(8)(-15)}[/tex] / 2(8)

x = 16  ± [tex]\sqrt{256+ 480}[/tex] / 16

x = 16  ± [tex]\sqrt{786}[/tex] / 16

x = 4  ± [tex]\sqrt{46}[/tex] / 4

x = 1 ± [tex]\sqrt{23}[/tex] / 8

Thus, the zeroes of the given polynomial f(x) are

x = 1 + [tex]\sqrt{23}[/tex] / 8 and x = 1 -[tex]\sqrt{23}[/tex] / 8. Option C is correct.

Learn more about quadratic equations;

brainly.com/question/13197897

#SPJ3

ACCESS MORE